
Detecting Sensor Dependencies for Building
Complementary Model Ensembles

Alexander Dockhorn, Rudolf Kruse

Fakultät für Informatik, Otto von Guericke Universität Magdeburg
Universitätsplatz 2, 39106 Magdeburg, Germany

E-Mail: {alexander.dockhorn, rudolf.kruse}@ovgu.de

Abstract

Forward Model Approximation is a recently developed method for learning
how to play unknown games. In this method game state transitions are
analyzed with the target of predicting the result of the agent’s actions.
Instead of using a single complex model, complementary model ensembles
can be used. This does not affect the accuracy in case each simple model
focuses on independent components of the game. However, it is an open
question how to retrieve these independent components without domain
knowledge of the game being studied. In this work we explore the usage of
bayesian belief network structure learning algorithms for the detection of
sensor dependencies. Multiple structure learning algorithms are evaluated
in a case-study involving two games of the GVGAI framework. Our
results indicate that the analyzed algorithms are able to detect necessary
dependencies for generating an approximated forward model.

1 Introduction

Popular training processes for artificial intelligence in games are based
on either studying expert play or training an agent from scratch using
reinforcement learning. Both method classes can achieve impressive
results, but the learning process often converges slowly and results in a
model that is hard to interpret (e.g., Deep Neural Networks).

In contrast, the Forward Model Approximation framework [6] learns to
describe relevant components of an unknown game by learning either
a complex model or a set of complementary models for the prediction

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 1



of future states. Each of those sub-models focuses on describing the
behavior of a single game component. Aggregating the results of all
sub-models lets us predict future game states with higher accuracy than
using a single model describing the behavior of all game components,
while maintaining interpretability of each sub-model. Furthermore, the
approximated forward model can be used to apply simulation-based search
methods, such as Monte Carlo Tree Search [4], which proved to be among
the top-performing algorithms in automated game-playing [7, 8, 13].

Previous attempts for building complementary model ensembles for For-
ward Model Approximation were based on exploiting the limitations of
game description languages [9], such as the video game description lan-
guage [14]. These description languages describe games as a set of distinct
game components with limited interactions. On the one hand, knowing
those limitations lets us create a conditionalized set of observations for
the prediction of each distinct game component. This filtering of the data
set’s attributes reduces the amount of data for training each sub-model,
speeds up the learning process, and generally assists in achieving a higher
accuracy with the resulting aggregated model. On the other hand, know-
ing the limitations between variable interactions is not always ensured,
which is why alternative methods for detecting relations between game
components and available game observations need to be found.

In this work we study the application of bayesian belief network structure
learning algorithms to detect dependencies among game objects and the
available sensory information. These dependencies can further be used to
create conditionalized databases for the model construction without the
need of knowing the game’s description. This will be the first step for
creating an autonomous learning approach for modeling unknown games
with the help of Forward Model Approximation.

In Section 2 we will briefly review general game playing. Section 3
presents a summary of the Forward Model Approximation framework and
its benefits and drawbacks. To overcome the latter we study structure
learning algorithms and their application to data that has been collected
by studying games of the GVGAI framework in Sections 4 and 5. In
Section 6 we present the results of our case-study and a discussion of the
usability of applied algorithms for detecting sensor dependencies. We
conclude our work in Section 7 in which we shortly summarize implications
of this case-study and provide an outlook for future work.

2 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



2 General Game Playing

General game playing poses the problem of creating an agent that is
capable to learn how to successfully play multiple games. Here, games
are represented as the combination of an interactive environment and
a controllable agent that interacts with it based on a set of pre-defined
actions. Each interaction can modify the environment and, therefore,
result in a new state. After an interaction the agent receives a response
in form of a numerical reward and the updated state.

The environment can be represented as a probability distribution:

𝑃𝑟{𝑅𝑡+1 = 𝑟, 𝑆𝑡+1 = 𝑠′|𝑆0, 𝐴0, 𝑅1, ..., 𝑆𝑡−1, 𝐴𝑡−1, 𝑅𝑡, 𝑆𝑡, 𝐴𝑡} (1)

where 𝑆𝑡 represents the state of the environment at time step 𝑡, 𝐴𝑡 is the
action that the agent chose at time 𝑡, and 𝑅𝑡+1 is the reward received
as the environment’s response. Thus, the future reward and the future
state depend on all previous interactions between the environment and
the agent. Hence, the complexity of this probability distribution grows
exponentially over time.

For this reason, general game analysis is often restricted to environments
that fulfill the Markov Property [18], in which the environment’s response
depends only on the current state and the chosen action. This reduces
the probability distribution to:

𝑃𝑟{𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎} (2)

The success of an agent and its related policy 𝜋 can be measured by the
return 𝐺. The return measures the accumulated reward till the end of
an episode.

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ... + 𝑅𝑇

If either the episodes are non-ending or the agent needs to value imme-
diate rewards higher than rewards received at a later point of time, the
discounted return is used.

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + · · · =
𝑇∑︁

𝑘=0
𝛾𝑘𝑅𝑡+𝑘+1

The parameter 𝛾 ∈ [0, 1] is the discount rate.

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 3



Reinforcement learning techniques try to estimate the expected return 𝑞
given a state-action pair and choose their action accordingly.

𝑞𝜋(𝑠, 𝑎) = E𝜋 [𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

= E𝜋

[︃ ∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎

]︃
(3)

For every game we search for an optimal policy 𝜋 that maximizes the
expected return of the agent. Given the expected return, the optimal
action can be determined by:

𝜋′(𝑠) = arg max
𝑎

𝑞𝜋(𝑠, 𝑎) (4)

3 Forward Model Approximation

The General Video Game AI (GVGAI) competition [13] offers two tracks,
which focus on different aspects of general game playing. In the single-
player planning track agents can use a forward model to predict the
outcome of an action sequence. Simulation-based search algorithms such
as Monte Carlo Tree Search [4] use this forward model to choose an action
sequence that maximizes their expected score. Agents of the single-player
learning track cannot access such a model, but can learn from repeated
interactions with the environment.

While simulation-based search algorithms show great performance in
the planning track, they cannot be applied without a forward model.
Therefore, the missing forward model led to multiple submitted agents
using reinforcement learning techniques, which learn the value of state-
action pairs by playing the game many times. Recently, we introduced
Forward Model Approximation [6] as a different solution to the special
requirements of the learning track. In Forward Model Approximation we
model the changes of the observed game state after applying an action
using either a single or a set of classifiers. In case the agent uses a single
classifier it tries to predict the future state based on the information on
the current state and the action to be applied. Because this approach
can result in a very complex classifier, we can also split it into multiple
sub-models, of which each of these classifiers predicts the behavior of a
single game entity or changes of a single observable value.

4 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



Both approaches become feasible in case the Markov Property holds,
whereupon, the game state does not depend on all previous interactions,
but only on the previous game state and the applied action. The transition
to the future state can then be modeled using either a deterministic or a
probabilistic model. In contrast to reinforcement learning approaches,
learning an approximated forward model can be done using few iterations,
which can later be used during simulation-based search. In case the model
predicts the game’s future states good enough, similar performance to
the single player planning track can be achieved.

However, learning the approximated forward model is a challenging
task due to the availability of a lot of sensor values, which might or
might not have an influence on the different components of the game.
Additionally, special attention should be paid on efficiency of the model
building process to ensure short learning times. In a previous work [9]
we explained how a complex forward model can be split in multiple
sub-models to achieve not only higher accuracy, but also reduce the
time spent for model construction. This approach is often justified due
to independent components of a game being studied. A solution for
model splitting exploits specific restrictions of the video game definition
language [14] to restrict the sub-model learning process [9].

Despite the advantages of this method, we see two major constraints:

1. Assumptions on the framework: The split into multiple sub-
models is based on the type definition of the video game definition
language. This type definition lets the agent detect similar behaving
entities using a type identifier. It cannot be assumed that this
information is accessible in games outside of the GVGAI framework.
Therefore, a natural extension would be to detect similar entities
based on their visual representation or their behavior at run-time.

2. Limitation to local influence factors: Each of the created sub-
models assumes independence of global influence factors, such that
only entities close to the modeled entity are taken into account
during the model building process. This is sufficient to detect
interactions between neighboring entities. However, it is not able
to model interactions between entities that are farther away, e.g., a
switch opening a door which is far away cannot be represented.

In this work we want to study methods for automatizing the filtering of
data sets to remove these assumptions.

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 5



4 Structure Learning of Bayesian Belief Nets

Studying the dependence of variables among each other can be imple-
mented by learning the structure of a bayesian belief net using the
observed data set. A bayesian belief net is a directed acyclic graph,
denoted by 𝒢, with parameters Θ. Structure learning approaches try
to find the DAG 𝒢 that encodes the dependence structure of the data
(see [2, 11] for a general description of bayesian belief networks). We
differentiate three categories of structure learning algorithms, namely
score-based, constraint-based, and hybrid approaches.

Scoring based approaches choose the best performing belief net structure
over a set of candidate structures by measuring the goodness of fit between
the structures implied probability distribution and the observed data.
However, finding a belief net structure over a given set of variables using
exhaustive search is super-exponential in the number of variables. Due
to the high number of sensors and their variability of values in games of
the GVGAI framework, this approach is infeasible. For this reason, local
search algorithms restrict the search in each iteration to a subspace of
network structures. For example the Hill Climbing (hc) algorithm [5, 10]
modifies the current structure by either adding, removing, or reversing an
edge. As a result of each possible modification the given graph structure
is rated using a network score, such as the Bayesian Information Criterion
[15]. The greedy hc algorithm is known to get trapped in local optima.
Tabu-Search (tabu) [3] maintains a tabu list of previously performed
modifications to avoid getting stuck.

Constraint-based approaches use conditional independence tests to learn
the dependence structure of the attributes given the observed sample. One
example is the Grow-Shrink (gs) algorithm [12], which first uses markov
blankets to fix an undirected structure of the graph and then orients edges,
removes existing cycles, and propagates directions to yet undirected edges.
The semi-interleaved Hiton Parents and Children (si-hiton-pc) algorithm
[1] learns local causal and markov blanket relationships. It is especially
suited for large attribute sets with only limited data available. Another
algorithm, which was developed with large attribute sets in mind, is the
Max-Min Parents and Children (mmpc) algorithm [19]. Similar to the
other two algorithms mmpc creates an undirected graph structure by
detecting all possible parents and children per node.

6 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



(a) the aliens game (b) the butterflies game

Figure 1: GVGAI games used for evaluation

Hybrid algorithms combine a restriction and a maximization phase.
During the restriction phase the search space is reduced to a subset of
possible DAG structures, e.g., by searching for all pairs of connected
nodes. In the maximization phase a score-based algorithm is used to
direct the edges of the determined graph structure. The Max-Min Hill-
Climbing (mmhc) algorithm [20] uses mmpc to restrict the network
structure and uses the hc algorithm to find the best configuration for
all edge directions. A more general framework is the 2-phase Restricted
Maximization (rsmax2 ), which lets the user choose the settings for both
phases independently [16, 17].

In this work we will test the algorithms mentioned above to learn the
structure of a belief net on the basis of all observable variables in the
GVGAI framework. Using this approach we want to identify dependent
and independent components in the belief net structure. While indepen-
dent components help us to reduce the complexity of sub-models in the
approximated forward model, dependent components point out interac-
tions between variables that should not be ignored. These interactions
can either be included in a sub-model building process or need to be
added during the aggregation process.

5 Building a Data Set for GVGAI Games

We evaluate our process using two exemplary games of the GVGAI compe-
tition to compare the results of different structure learning algorithms.

In our first game aliens (see Figure 1a) the player steers a small space-ship
at the bottom of the screen. In the boundaries of the screen it can either
move left or right. The spaceship can also shoot to create a bullet over
the player’s avatar, which is moving to the top of the screen, where it

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 7



Table 1: Framework specific sensor values stored during the play session.

Player Sensors NPC Sensors Game State Sensors
∙ X and Y pos ∙ X and Y pos ∙ game tick
∙ X and Y grid pos ∙ X and Y grid pos ∙ destroyed/created
∙ X and Y pos change ∙ X and Y pos change instances of type x
∙ 8-directional ∙ 8-directional ∙ score change

neighborhood neighborhood ∙ win/lose/continuing
∙ selected action ∙ previous X and Y

position change
∙ delay since last

movement

will be destroyed. Only one bullet can exist at a time. At the top of
the screen multiple alien spaceships will move from left to right. In case
an alien reaches the end of its row, instead of leaving the screen it will
move down one row and change its flying direction. This process repeats
until it reaches the players row in which case the player loses the game
by touching the alien. This can only be avoided by shooting the alien
spaceships before they reach the bottom row. Further, multiple boulders
can be destroyed by shooting them. The player wins the game in case all
aliens are destroyed, but loses if its own spaceship is hit by an alien.

The second game butterflies (see Figure 1b) tasks the player to catch all
the butterflies flying around. These butterflies fly at random and can free
more butterflies in case they are touching one of the cocoons. The player
loses the game once all cocoons were destroyed. This can only be avoided
by catching all the butterflies before they destroy all the cocoons.

Both games were played by a random agent not knowing any of the
game’s mechanics. These games were selected, because they are two of
the few games a random agent might be able to win. During the play
sessions we stored the sensor values listed in Table 1.

6 Evaluation of Structure Learning Algorithms

For the evaluation we created a data set of playthroughs using the 2017
Java version of the GVGAI framework. Our evaluation of structure

8 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



player action

x change y change

xpos ypos

x grid pos y grid pos

↖
⌃⎮ ↗

←− −→

↘
⎮⌄ ↘

neighborhood relations

neighbor type

destroy

Figure 2: Retrieved movement specific dependence structures; (top left) the player’s
action and movement; (top right) position and grid position; (bottom left)
neighborhood relations; (bottom right) threat of being destroyed by
neighboring object

learning algorithms was performed using the bnlearn R-package [16].
During the preprocessing phase we nominalized all attributes even if they
are on a numerical scale. This was done to ensure that all algorithms
can be applied equally. The data set consists of the listed attributes
(see Table 1) for every observable game element (the player and all non-
player elements) as well as the general game state information for every
game tick. In case an element cannot be observed during a game tick the
value of all its attributes is set to NA.

Depending on the number of non-player elements (like butterflies or alien
spaceships) the dataset contains more than 500 attributes. Attributes
that only depict a single value over the time of a complete playthrough
are removed during the preprocessing phase. We additionally deleted the
observations of all objects that never change their position (X change,
Y Change), are present from the beginning of the game, and are never
removed during the playthrough. This was done to exclude background
objects, which are observed and reported, but do never influence any of
the game’s components. All remaining attributes are used for learning
the structure of a bayesian belief net.

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 9



Table 2: Summary of learned structures for the game; #E: number of edges,
#V: number of vertices, #C: number of connected components;
*the algorithms gs, mmpc and si-hiton-pc return an undirected graph, the
listed number of edges is the number of undirected edges

algorithm alien butterflies
#E #V #C #E #V #C

hc 361 370 9 339 318 2
tabu 361 370 9 343 318 1
gs 13* 26 13 28* 57 27
mmpc 21* 42 21 40* 76 36
si-hiton-pc 93* 184 91 148* 237 95
rsmax2 (gs, hc/tabu) 6 12 6 30 57 27
rsmax2 (mmpc, hc/tabu) 14 28 14 40 76 36
rsmax2 (si-hiton-pc, hc/tabu) 92 182 90 139 230 94

We qualitatively compare the structure learning algorithms hc, tabu (score-
based), gc, mmpc, si-hiton-pc (constraints-based), and rsmax2 for all
combinations of mentioned score-based and constraint-based algorithms.
Interesting dependency structures are shown in Figure 2. They highlight
game specific dependencies that proved useful in previously generated
approximated forward models, such as modeling the player’s movement,
understanding the dependency of an object’s neighborhood sensors, and
predicting the destruction of an object. The following sections present
the results of processing data of the aliens and butterflies game.

6.1 Evaluation of the Game Aliens

The analysis of the game aliens is based on a single random playthrough,
which consists of 715 observed game ticks and a total of 405 unfiltered
attributes. Table 2 summarizes the resulting graph structures of applied
structure learning algorithms.

The hc and the tabu algorithm return the same graph, which nearly
includes all attributes and only a few components. Its biggest component
consists of 293 vertices and includes movement, neighborhood, and destroy
relations of nearly all aliens and alien shots. Even if unpractical, such
a single big component is justified by the simultaneous movement of

10 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



all alien objects. For this reason, the algorithm cannot detect that
these objects act independently from each other. One of the smaller
components including only 6 vertices represents the player’s movement,
which in this game is independent of other game objects. Remaining
components include all attributes related to a single shot object, which
did not collide with any other game object. For this reason, the observed
shot was independent of all other observed game objects.

The gs, mmpc, rsmax2(gs,hc/tabu), and rsmax2(mmpc,hc/tabu) algo-
rithms all fail in detecting most attribute dependencies. Their resulting
graphs only consist of a few edges correctly connecting the position and
the grid position attributes of some instances. Additionally the result of
the rsmax2 algorithm only depends on the chosen restriction algorithm,
as switching from hc to tabu did not change the resulting graph.

Applying the si-hiton-pc and rsmax2(si-hiton-pc, hc/tabu) returns a
graph with many small communities, which represent characteristics of
the game, but do not include all related attributes. These communities
include parts of the neighborhood relation or movement based attribute
interactions, but overall failed to detect necessary dependencies.

6.2 Evaluation of the Game Butterflies

In the second part of our case study we analyze the butterflies game. Our
data set is also based on a single random playthrough, which consists of
667 observed game ticks and a total of 334 unfiltered attributes. Table 2
summarizes the resulting graph structures of applied structure learning
algorithms.

As it was the case in the previous game, both the hc and the tabu
algorithm return nearly similar graphs. The resulting graph structure
includes all game object dependencies in a single component. In the case
of the butterflies game, this is overly specific, since many of the game’s
objects act independent from each other. However, in case a butterfly
comes into contact with a cocoon, it will destroy it and spawn a new
butterfly. This interaction can be found in a specific playthrough, but
might not appear in the next one. Currently, it is not possible to relate
sensor values from differing playthrough, such that it is impossible to
render interacting objects independent from each other.

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 11



The gs and mmpc algorithms as well as their rsmax2 counterparts tend to
form very small groups of attributes. Once again the output of the rsmax2
algorithm only depends on the chosen restriction phase. The resulting
graphs include parts of the neighborhood dependencies. Movement and
destroy interactions were not included.

si-hiton-pc, rsmax2(si-hiton-pc, hc), and rsmax2(si-hiton-pc, tabu) all
result in similar graph structures including 95 connected components.
These components model neighborhood interactions, but rarely connect
attributes of differing objects.

6.3 Discussion

The results of our two case studies showed that the applied algorithms
largely vary in the resulting graph structures. Generally, the constraint
based algorithms gs and mmpc and their hybrid counterparts created
very sparse graph structures. The generated structures map important
attribute dependencies of the game, but do so very unreliably. There-
fore, they are unsuited for a general framework for detecting object
dependencies.

The tested score-based approaches (hc and tabu) as well as the constraint-
based si-hiton-pc algorithm detected dependence structures on a reliable
basis. The hc and tabu algorithms result in graphs with higher density,
due to connections in between attributes of different game objects. These
connected game objects interact only very rarely, therefore, learning
a model on the returned graph structure may be over-specific to the
single observed playthrough. In return, the si-hiton-pc algorithm and
the rsmax2 algorithm using si-hiton-pc during its restriction phase both
detect most necessary attribute dependencies for modeling the behavior
of the games’ objects. However, inter-object attribute dependencies are
not taken into account.

Using the generated graph structure of si-hiton-pc for the generation of
an approximated forward model will result in a large number of simple
models. The results of these models need to be aggregated and will rarely
result in mistakes in case of interactions between multiple objects exist.
Higher accuracy can be achieved by using the graph structures of the
hc or the tabu algorithm. Those models will be able to achieve a higher
accuracy at the cost of a higher complexity.

12 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



7 Conclusion and Future Work

In this work we studied the suitability of belief net structure induction al-
gorithms for detecting object dependencies in games of the GVGAI frame-
work. Out of the tested algorithms score-based algorithms such as hc and
tabu seem to detect the most object dependencies. Even rare interactions
between objects can be modeled using attribute sets of the resulting graph
structures. Applying the si-hiton-pc or rsmax2(si-hiton-pc, hc/tabu) al-
gorithm results in graphs with reduced density. Forward Model Ap-
proximation might benefit from this by a reduced complexity for each
sub-model, which may also reduce the model’s accuracy.

Our small case study showed the applicability of belief net structure
induction algorithms for an automated analysis of dependency structures.
Forward Model Approximation will benefit from this by allowing a divide
of the agent’s sensor values into independent sets. For each of these sets
a simple model can be trained. Automatizing the division into multiple
sets of independent sensor values makes it possible to apply Forward
Model Approximation without information about the game’s attributes’
dependency structure.

One of the next steps will be to incorporate the structure learning
algorithm to Forward Model Approximation. Thus, creating a unified
framework for the analysis of unknown games without further domain
knowledge. For this purpose, we will need to study the generalizability
of the studied structure learning algorithms. Extending our case-study
will provide further insights in characteristics of games and how they
influence the applicability of varying structure learning algorithms.

References

[1] Constantin F Aliferis, Alexander Statnikov, Subramani Mani, and
Xenofon D Koutsoukos. Local Causal and Markov Blanket Induction
for Causal Discovery and Feature Selection for Classification Part I:
Algorithms and Empirical Evaluation Ioannis Tsamardinos. Journal
of Machine Learning Research, 11(March):171–234, 2010.

[2] Christian Borgelt, Matthias Steinbrecher, and Rudolf Kruse. Graph-
ical Models. John Wiley & Sons, Ltd, Chichester, UK, August
2009.

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 13



[3] R.R. Bouckaert. Bayesian Belief Networks: from Construction to
Inference. PhD thesis, Utrecht, Netherlands, 1995.

[4] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M.
Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener,
Diego Perez, Spyridon Samothrakis, and Simon Colton. A Sur-
vey of Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43, March 2012.

[5] Gregory F Cooper and Edward Herskovits. A Bayesian method for
the induction of probabilistic networks from data. Machine Learning,
9(4):309–347, October 1992.

[6] Alexander Dockhorn and Daan Apeldoorn. Forward Model Approxi-
mation for General Video Game Learning. In 2018 IEEE Conference
on Computational Intelligence and Games, CIG 2018, 2018.

[7] Alexander Dockhorn, Christoph Doell, Matthias Hewelt, and Rudolf
Kruse. A decision heuristic for Monte Carlo tree search doppelkopf
agents. In 2017 IEEE Symposium Series on Computational Intelli-
gence (SSCI), pages 1–8. IEEE, November 2017.

[8] Alexander Dockhorn, Max Frick, Ünal Akkaya, and Rudolf Kruse.
Predicting opponent moves for improving hearthstone ai. In Jesús
Medina, Manuel Ojeda-Aciego, José Luis Verdegay, David A. Pelta,
Inma P. Cabrera, Bernadette Bouchon-Meunier, and Ronald R.
Yager, editors, Information Processing and Management of Uncer-
tainty in Knowledge-Based Systems. Theory and Foundations, pages
621–632, Cham, 2018. Springer International Publishing.

[9] Alexander Dockhorn, Tim Tippelt, and Rudolf Kruse. Model De-
composition for Forward Model Approximation. In 2018 IEEE
Symposium Series on Computational Intelligence (SSCI), 2018.

[10] José A. Gámez, Juan L. Mateo, and José M. Puerta. Learning
Bayesian networks by hill climbing: efficient methods based on pro-
gressive restriction of the neighborhood. Data Mining and Knowledge
Discovery, 22(1-2):106–148, January 2011.

[11] Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz
Mostaghim, and Matthias Steinbrecher. Computational Intelligence.
Texts in Computer Science. Springer London, London, 2nd editio
edition, 2016.

14 Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018



[12] Dimitris Margaritis, Sebastian Thrun, Christos Faloutsos, Andrew W
Moore, and Gregory F Cooper. Learning Bayesian Network Model
Structure from Data. PhD thesis, Carnegie Mellon University, 2003.

[13] Diego Perez-Liebana, Spyridon Samothrakis, Julian Togelius, Tom
Schaul, Simon M. Lucas, Adrien Couetoux, Jerry Lee, Chong U. Lim,
and Tommy Thompson. The 2014 General Video Game Playing
Competition. IEEE Transactions on Computational Intelligence and
AI in Games, 8(3):229–243, 2016.

[14] Tom Schaul. An extensible description language for video games.
IEEE Transactions on Computational Intelligence and AI in Games,
6(4):325–331, 2014.

[15] Gideon Schwarz. Estimating the Dimension of a Model. The Annals
of Statistics, 6(2):461–464, March 1978.

[16] Marco Scutari. Learning bayesian networks with the bnlearn R
package. Journal of Statistical Software, 35(3):1–22, 2010.

[17] Marco Scutari and Jean-Baptiste Denis. Bayesian Networks with
Examples in R. Chapman and Hall, Boca Raton, 2014. ISBN
978-1-4822-2558-7, 978-1-4822-2560-0.

[18] Publisher Taylor. The Oxford Dictionary of Statistical Terms. Tech-
nometrics, 46(2):266–266, May 2004.

[19] Ioannis Tsamardinos, Constantin F. Aliferis, and Alexander Stat-
nikov. Time and sample efficient discovery of Markov blankets and
direct causal relations. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining -
KDD ’03, page 673, New York, New York, USA, 2003. ACM Press.

[20] Ioannis Tsamardinos, Laura E. Brown, and Constantin F. Aliferis.
The max-min hill-climbing Bayesian network structure learning
algorithm. Machine Learning, 65(1):31–78, 2006.

Proc. 28. Workshop Computational Intelligence, Dortmund, 29.-30.11.2018 15


	A. Dockhorn, R. Kruse

